The intracellular N-terminus domain of the acid-sensing ion channel 1a participates in channel opening and membrane expression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs

Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...

متن کامل

Insights into the mechanism of pore opening of acid-sensing ion channel 1a.

Acid-sensing ion channels (ASICs) are trimeric cation channels that undergo activation and desensitization in response to extracellular acidification. The underlying mechanism coupling proton binding in the extracellular region to pore gating is unknown. Here we probed the reactivity toward methanethiosulfonate (MTS) reagents of channels with cysteine-substituted residues in the outer vestibule...

متن کامل

Trypsin cleaves acid-sensing ion channel 1a in a domain that is critical for channel gating.

Acid-sensing ion channels (ASICs) are neuronal Na(+) channels that are members of the epithelial Na(+) channel/degenerin family and are transiently activated by extracellular acidification. ASICs in the central nervous system have a modulatory role in synaptic transmission and are involved in cell injury induced by acidosis. We have recently demonstrated that ASIC function is regulated by serin...

متن کامل

acid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs

objective(s): activation of acid-sensing ion channel 1a (asic1a) is responsible for tissue injury caused by acidosis in nervous systems. but its physiological and pathological roles in nucleus pulposus cells (npcs) are unclear. the aim of this study is to investigate whether asic1a regulates the survival of npcs in the acidic environment of degenerated discs. materials and methods: npcs were is...

متن کامل

Pt718. Histamine Selectively Potentiates Acid-sensing Ion Channel 1a

Although acid-sensitive ion channels (ASICs) play an important role in brain functions, the exact mechanism of their physiological activation remain unclear. A possible answer to the intriguing question is that some presently unknown endogenous ligand(s) positively modulate ASICs and enhance their responses to physiologically significant level. In the present work we found that histamine select...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Molecular Pharmacology

سال: 2021

ISSN: 0026-895X,1521-0111

DOI: 10.1124/molpharm.120.000153